Authors:
Igor I. Soloviev, Nikolay V. Klenov, Sergey V. Bakurskiy, Mikhail Yu. Kupriyanov, Alexander L. Gudkov and Anatoli S. Sidorenko
The predictions of Moore's law are considered by experts to be valid until 2020 giving rise to "post-Moore's" technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore's alternative for the development of supercomputers. In this paper, we consider operation principles of an energy-efficient superconductor logic and memory circuits with a short retrospective review of their evolution. We analyze their shortcomings in respect to computer circuits design. Possible ways of further research are outlined.
Authors:
Jiajia Zhou, Aleksey V. Belyaev, Friederike Schmid and Olga I. Vinogradova
We report results of dissipative particle dynamics simulations and develop a semi-analytical theory of an anisotropic flow in a parallel-plate channel with two superhydrophobic striped walls. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. It allows us to optimize area fractions, slip lengths, channel thickness, and texture orientation to maximize a transverse flow. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations, and may also find applications in passive microfluidic mixing.
In many applications it is advantageous to construct effective slip boundary conditions, which could fully characterize flow over patterned surfaces. Here we focus on laminar shear flows over smooth anisotropic surfaces with arbitrary scalar slip b(y), varying in only one direction. We derive general expressions for eigenvalues of the effective slip-length tensor, and show that the transverse component is equal to half of the longitudinal one, with a two times larger local slip, 2b(y). A remarkable corollary of this relation is that the flow along any direction of the one-dimensional surface can be easily determined, once the longitudinal component of the effective slip tensor is found from the known spatially non-uniform scalar slip.
We describe a generalization of the tensorial slip boundary condition, originally justified for a thick (compared to texture period) channel, to any channel thickness. The eigenvalues of the effective slip-length tensor, however, in general case become dependent on the gap and cannot be viewed as a local property of the surface, being a global characteristic of the channel. To illustrate the use of the tensor formalism we develop a semianalytical theory of an effective slip in a parallel-plate channel with one superhydrophobic striped and one hydrophilic surface. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. We then present results of lattice Boltzmann simulations to validate the analysis. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations.
We study the ionic equilibria and interactions of neutral semi-permeable spherical shells immersed in electrolyte solutions, including polyions. Although the shells are uncharged, only one type of ion of the electrolyte can permeate them, thus leading to a steric charge separation in the system. This gives rise to a charge accumulation inside the shell and a build up of concentration-dependent shell potential, which converts into a disjoining pressure between the neighboring shells. These are quantified using the Poisson–Boltzmann and integral equations theories. In particular, we show that in a case of low valency electrolytes, interactions between shells are repulsive and can be sufficiently strong to stabilize the shell dispersion. In contrast, the charge correlation effects in solutions of polyvalent ions result in attractions between the shells, with can lead to their aggregation.
Benvenuti nella nostra pagina eventi, dove puoi scoprire tutte le novità, gli aggiornamenti e le informazioni sull'evento imminente. Resta sintonizzato per ulteriori informazioni su un evento da non perdere.
© 2010-2022 MEDITERRANEAN INSTITUTE OF FUNDAMENTAL PHYSICS • C.F. 90069050582